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ABSTRACT Scabies is a major and potentially growing public health problem world-
wide with an unmet need for acaricidal agents with greater efficacy and improved phar-
macological properties for its treatment. The objective of the present study was to as-
sess the efficacy and describe the pharmacokinetics profile of a novel acaricide,
afoxolaner (AFX), in a relevant experimental porcine model. Twelve pigs were experi-
mentally infested and either treated with 2.5 mg/kg single dose oral AFX (n � 4) or 0.2
mg/kg, two doses 8 days apart, oral ivermectin ([IVM] n � 4) or not treated for scabies
(n � 4). The response to treatment was assessed by the reduction of mite counts in skin
scrapings as well as clinical and pruritus scores over time. Plasma and skin pharmacoki-
netics profiles for both AFX and IVM were evaluated. AFX efficacy was 100% at days 8
and 14 posttreatment and remained unchanged until the study end (day 45). IVM effi-
cacy was 86% and 97% on days 8 and 14, respectively, with a few mites recovered at
the study end. Clinical and pruritus scores decreased in both treated groups and re-
mained constant in the control group. Plasma mean residence times (MRT) were 7.1 �

2.4 and 1.1 � 0.2 days for AFX and IVM, respectively. Skin MRT values were 16.2 � 16.9
and 2.7 � 0.5 days for AFX and IVM, respectively. Overall, a single oral dose of AFX was
efficacious for the treatment of scabies in experimentally infested pigs and showed re-
markably long MRTs in plasma and, notably, in the skin.
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Scabies is an epidermal infestation caused by the mite Sarcoptes scabiei in humans
(1). It is increasingly recognized as a large and potentially growing public health

problem worldwide with a significant burden (2, 3). The prevalence is estimated to be
around 100 to 130 million cases/year (4–7). Scabies is often perceived erroneously as
causing a simple itch, but over the past decade, studies emphasized its important
morbidity, mostly caused by secondary bacterial infections (4). Opportunistic patho-
gens such as Streptococcus pyogenes (group A streptococcus) and Staphylococcus
aureus are commonly associated with human scabies. Especially in tropical and sub-
tropical countries, these can lead to invasive bacterial infections and postinfection
complications, such as poststreptococcal glomerulonephritis, acute rheumatic fever,
and rheumatic heart disease (8–10). The psychosocial and economic impacts caused by
scabies through school absenteeism or a loss of work productivity due to pruritus and
lack of sleep are considerable and lead to an exacerbation of poverty in affected
populations (5, 11).

The current most accepted medical intervention to treat scabies consists of multiple
treatments with either one of four topical agents (5% permethrin, 10% to 25% benzyl
benzoate, piperonyl butoxide-synergized pyrethrins, or 0.5% malathion) and/or oral
ivermectin (IVM), the only systemic drug approved in some countries (12, 13). The major
limitations of these antiparasitic therapies are the absence of 100% cure in the target
population, a poor compliance with topical application and repeated treatment sched-
ules, the limited activity against Sarcoptes eggs, and an insufficient half-life to cover the
whole 14-day life cycle of the mite (14). The risk of emergence of mite resistance is of
growing concern (15, 16), especially with the increasing use of permethrin, esdepalle-
thrin, and IVM for scabies and for other skin diseases in humans (e.g., head lice and
rosacea), but also in animal parasitic diseases (17). Thus, there is an unmet need for new
acaricide molecules with greater efficacy and improved pharmacological profiles to
overcome scabies and its morbidity (3).

New hopes to find an adequate treatment for human scabies are coming from the
translation of molecules such as moxidectin from the veterinary field (14). More
recently, research has advanced that might give new perspectives for human scabies
treatment. The veterinary therapeutic arsenal has been expanded with various effective
ectoparasiticides (18). Afoxolaner (AFX), a member of the novel isoxazoline family, is
administered orally and shows a great efficacy against fleas, ticks, and mites in dogs (19,
20). AFX inhibits parasite �-aminobutyric acid (GABA) and glutamate-gated chloride
channels. Notably, AFX binds to a site distinct from the binding site of other acaricides-
insecticides, among them, the macrocyclic lactones (e.g., IVM) (21). AFX has advanta-
geous pharmacokinetics and toxicity profiles with long-lasting activity (22).

We recently optimized the experimental porcine model developed by Mounsey et al. in
2010 (23) and demonstrated its usefulness for preclinical assessment of drug candidates for
the treatment of scabies (24). Here, we assessed drug efficacies and pharmacokinetic
profiles of a single oral dose of AFX compared with two oral doses of IVM in experimentally
infested pigs.

RESULTS
Study design. Twelve 3-week-old pigs were randomly assigned to 3 groups in

January 2015 and were infested with Sarcoptes scabiei var. suis 2 weeks after their arrival
(Fig. 1). Dexamethasone (0.2 mg/kg) was used daily during the entire study to promote
the initial infestation and to increase the intensity and duration of the infestation. Pigs
were treated in a blinded matter at 9 weeks postinfection, day 0 (D0) at the end of
March 2015. The first group of pigs (n � 4) received oral AFX at the dosage of 2.5 mg/kg
given once at D0. The second group (n � 4) received oral IVM at the dosage of 0.2
mg/kg twice (on D0 and day 8 [D8]). The third group (n � 4) was a control group and
did not receive any treatment against mites. One pig (in the IVM-treated group) died
during the study because of a congenital malformation of the digestive tract. The
response to treatments was assessed by the reduction of live mite counts in skin
scrapings and by the reduction of clinical and pruritus scores at different time points.
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The endpoint was the complete absence of live mites at day 14 (D14). Plasma and skin
pharmacokinetics profiles for both drugs were evaluated.

Pigs assessment at baseline. At baseline (D0), pigs were 12 weeks old and their
weights ranged from 10.7 to 19.5 kg (mean � standard deviation [SD], 15.2 � 2.7 kg).
At D0, all 12 pigs were infested with scabies. No statistical difference was found
between the three groups in terms of mite count in skin scrapings (P � 0.944) or clinical
(P � 0.751) and pruritus (P � 0.893) scores. Mite counts and clinical and pruritus scores
at baseline are shown in Fig. 2A, 3, and 4, and Tables S1 and S2 in the supplemental
material.

Parasitological assessment of drug efficacy. On D14, the endpoint, all AFX-
treated pigs and one of three IVM-treated pigs were mite free. The progression of the
parasite burden in the AFX- or IVM-treated and control pigs after treatments from
baseline (D0) to the study end (D45) is presented in Fig. 2A. The partition of the parasite
population between immature and adult live stages detected in the scrapings is
presented in Fig. 2B. The percentage efficacy of the treatment and the percentage
reduction in the number of live mites in skin scrapings over time are shown in Table S1.
On D14, the drug efficacy was 100% in the AFX-treated pigs compared to 95.4% (range,
87.7% to 98.6%) in IVM-treated pigs, and the percentage reduction of the mite count
was 100% in AFX-treated pigs compared to 94.7% (range, 82.7% to 100%) in the
IVM-treated pigs. From D8 posttreatment to the study end, not a single mite was
detected in the scrapings of the AFX-treated pigs. In contrast, among the IVM-treated
pigs, one pig was still infested with live mites at the end of the study. In all animals of
the untreated control group, the mite count remained constant until the end of the
study. After treatment, the numbers of mites over time in both treated groups were
statistically different from the count in the control group (P � 0.0001) and statistically
different from each other (P � 0.045).

After treatment, the large majority of eggs retrieved from scrapings of all three
cohorts hatched in the incubator (37°C, 90% relative humidity). At baseline (prior to
treatment), 12 eggs from each cohort were incubated, and all except one in the control
group and one in the AFX-treated group hatched. At D2 posttreatment, hatching was
observed for 10 of 10 eggs, 7 of 8 eggs, and 8 of 8 eggs from the AFX, IVM-treated, and
control groups, respectively. At D4 posttreatment, hatching was observed for 1 of 1
egg, 3 of 3 eggs, and 12 of 12 eggs from the AFX, IVM-treated, and control groups,
respectively. At D8 and D14 posttreatment, no eggs were found in scrapings from the
AFX-treated and the IVM-treated animals. All the eggs from the control group hatched.

FIG 1 Study design showing the three experimental phases. DXM, dexamethasone; D, day; AFX, afoxolaner; IVM,
ivermectin.
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Clinical assessment of drug efficacy. The mean clinical scores over time in the
three groups are presented in Fig. 3 and Table S2. Clinical lesions disappeared com-
pletely in all AFX-treated pigs, whereas two of three IVM-treated pigs still had lesions
at the end of the study, albeit with 93% improvement (Table S2). After treatment, the
mean clinical scores of both treated groups were statistically different from those of the
control group (P � 0.0001) and statistically different from each other (P � 0.023). No
clinical signs of drug intolerance were noticed during the 50-day period of observation
after administration of the two drugs. Side effects due to steroid long-term adminis-
tration were mild (increase of the appetite and hairiness).

Straight after treatment (D2), an increase of pruritus was observed in both treated
groups, followed by a decrease of the pruritus score (Fig. 4). A second peak was
observed in the IVM-treated group at D8, just after the second administration of IVM.

FIG 2 (A) Mite counts (mean � SD) for the AFX- and IVM-treated and control pigs over time after treatments from baseline
(D0) to the study end. (B) Partition of the different life stages (adult or immature) recovered from the skin scrapings
collected from the AFX- and IVM-treated and control pigs over time after treatments from baseline (D0) to the study end.
*, less than 10 mites were recovered in total from the skin scrapings; AFX, afoxolaner; IVM, ivermectin.
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After treatment, the mean pruritus scores of both treated groups were statistically
different from those of the control group (P � 0.0001) but not statistically different from
each other (P � 0.566).

Plasma and skin drug levels in AFX- and IVM-treated groups. Pharmacokinetics
after a single oral dose of AFX and double oral doses of IVM were determined in
plasma and in skin (Table 1). In the plasma, the highest concentrations of both
drugs were detectable within 2 h after oral administration and declined in a linear
manner over time (Fig. 5). There was a high individual variability of AFX plasma
concentration the first days postadministration, certainly due to drug absorption
variability. Nevertheless, AFX was detectable until the study end (D50), whereas IVM
was barely detectable 5 (D5) or 6 (D14) days after the first or second oral admin-
istration, respectively. Less than half a day postadministration, the AFX plasma
maximum concentration of drug [Cmax] was 4.4-fold higher than that of IVM. The
AFX area under the concentration-time curve [AUC] was �32-fold larger than that
for IVM. AFX exhibited a long mean residence time [MRT] in plasma, with a mean
MRT value of 7.1 � 2.4 days. For IVM the value was 1.1 � 0.2 days.

Both drugs reached the skin compartment on D1 postadministration. There were
good correlations between plasma and skin concentrations for the two drugs (r � 0.855
and r � 0.804 for AFX and IVM, respectively). Both drugs accumulated at high
concentrations in the skin (Fig. 6), and the Cmax values were 9.7-fold and 1.6-fold higher
than those measured in plasma for AFX and IVM, respectively. Consequently, for both
drugs, the skin exposure based on AUC and Cmax values was greater than the corre-
sponding parameters in plasma, indicating marked distribution into the target tissue
(i.e., the skin), especially for AFX. The calculation of tissue/plasma AUC ratios indicated

FIG 3 Clinical scores (means � SDs) for the AFX- and IVM-treated and control pigs over time from scabies infection
to the study end. The manifestation of scabies infestation in the skin areas of five anatomic sites (ears, legs, tail,
back, and head) was monitored weekly. Clinical scores are based on the skin surface affected by scabies lesions
(scored 0 to 6: 0, 0%; 1, �10%; 2, 10% to 29%; 3, 30% to 49%; 4, 50% to 69%; 5, 70% to 89%; 6, 90% to 100%),
intensity of skin erythema (scored 0 to 4: 0, no erythema; 1, mild; 2, moderate; 3, severe; 4, extremely severe), and
the encrustment intensity (scored 2� as 0 to 4: 0, no crust; 1, gray to white, thin and irregular 1- to 2-mm crust;
2, 2- to 5-mm crust; 3, gray-brown �5-mm crust; and 4, �5-mm hard crust). The score was calculated for the 5
different anatomic sites and added. W, week; D, day; AFX, afoxolaner; IVM, ivermectin.
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that exposure relative to plasma was high for AFX in skin (ratio, 9.2) compared to IVM
(ratio, 4.8). Interestingly, AFX showed a strong persistence in the skin with a mean MRT
value of 16.2 � 16.9 days, much higher than that for ivermectin, with a MRT of 2.7 �

0.5 days.

DISCUSSION

Scabies mites cannot be maintained or propagated in vitro away from their host for
more than a few days (25). Therefore, the establishment of a surrogate experimental
porcine scabies model (23) provides real potential to conduct translational preclinical
and pharmacokinetics studies with a new drug candidate. Although costly, pigs rep-
resent the ideal host to model human scabies. Porcine sarcoptic mange features are
very similar to scabies in humans (26), and pigs have unsurpassed similarities in skin
anatomy, physiology, and immunology (27). We recently showed that this experimental
porcine model was useful for the preclinical assessment of drug candidates (24). Our

FIG 4 Pruritus scores (means � SDs) for the AFX- and IVM-treated and control pigs over time from scabies infestation induction
to the study end. D, day; W, week; AFX, afoxolaner; IVM, ivermectin.

TABLE 1 Pharmacological parameters for AFX and IVM in plasma and in skin after oral
administration to scabies-infested pigsa

Sample type Cmax (ng/ml)b

Tmax

(days)c

AUCt-last

(days · ng/ml)d

MRTC-last

(days)e

Plasma
AFX 196 � 160.2 0.4 � 0.4 1,217.5 � 751.5 7.1 � 2.4
IVM 44.2 � 11.6f 0.2 � 0.0 38.7 � 17.9 1.1 � 0.2f

Skin
AFX 1,909.2 � 962.4 1.25 � 0.5 11,159.3 � 6,158.4 16.2 � 16.9
IVM 72.0 � 40.2f 1.0 � 0.0 186.2 � 104.8 2.7 � 0.5f

aValues are presented as means � SDs of AFX and IVM in the plasma and in the skin of pigs following oral
intake.

bCmax, maximum plasma concentration.
cTmax, time to maximum plasma concentration.
dAUCt-last, area under the plasma curve concentration-time curve from time zero after first administration to
the last sampling time point with a measurable concentration.

eMRTC-last, mean residence time.
fP � 0.001 versus. AFX (compared with a nonparametric Mann-Whitney test).
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first preclinical study using this model showing that moxidectin was more efficient than
the regular IVM-based treatment has served as the baseline for a rational strategy to
conduct larger high-powered efficacy studies in humans (24). Even though the number
of pigs involved in these pilot studies is limited, the cohort size can be considered a
representative sample for a proof of concept.

In this preclinical study, we demonstrated a better efficacy of a single dose (2.5
mg/kg) of AFX than of two doses of IVM (0.2 mg/kg) against a scabies infestation in
pigs. AFX achieved a complete and fast parasitological and clinical cure. This was not
the case in the IVM-treated group, where two of three pigs were not cured at the
14-day posttreatment endpoint. In fact, one pig of three was still infested with live
mites at the end of the study. Laboratory or field studies looking at the efficacy of AFX
(28) or other isoxazolines such as fluralaner or sarolaner (29–31) against S. scabiei

FIG 5 Mean concentration-time profiles (means � SDs, ng/ml) in plasma following oral administration of
AFX or IVM in scabies-infested pigs. Concentrations measured at hour 2, 4, 6, and 24 of D0 for AFX and
IVM and on D2, 4, 5, 8 (4 h after the second IVM dose), 10, 14, 21, 28, 35, 45, and 50 posttreatment are
depicted. D, day; AFX, afoxolaner; IVM, ivermectin.

FIG 6 Mean concentration-time profiles (means � SDs, ng/g) in skin following oral administration of AFX
or IVM in scabies-infested pigs. Concentrations measured on D1, 2, 4, 5, 8 (4 h after the second IVM dose),
10, 14, 21, 28, 35, 45, and 50 posttreatment are depicted. *, outlier measured concentrations. D, day; AFX,
afoxolaner; IVM, ivermectin.
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infestation in dogs were recently completed. In naturally infested dogs (n � 10),
Beugnet et al. showed that oral AFX dosed at 2.5 mg/kg also achieved a 100% efficacy
on the basis of mite counts at D28 and D56 posttreatment. Clinical scores declined to
80% in the AFX-treated dogs versus 50% in the control group (28). The general
observations of the present study were strictly comparable to those of our first trial (24)
and successfully replicated previous Australian reports (23, 32, 33) with regard to the
development of disease, strengthening the use of this robust experimental model for
drug development.

The population structure of the mites recovered from the skin scrapings from the
pigs differed in the different treatment groups (Fig. 2B). Before the administration of
treatments, we observed a homogenous partition of the immature versus adult stages
in all animals. This population structure remained constant in untreated pigs. Four days
after the first IVM oral administration, there was a dramatic decrease of the number of
adult mites, presumably killed by the drug, and an increased proportion of immature
stages, which corresponded to newly hatched mites from the eggs at the time of
treatment. This can be explained by the absence of ovicidal activity of IVM and in
accordance with the life cycle of S. scabiei, as previously proposed by Currie and
McCarthy (34). In contrast, in AFX treated-pigs, a rapid and definitive decrease in the
mite count was observed. To date, there are no studies investigating the ovicidal
activity of AFX. While our sampling protocol did not aim for isolating large numbers of
eggs, the data set nevertheless indicates that both drugs have limited ovicidal activity.

Drug uptake into the skin and stability under its physiological conditions are further
factors that may contribute to the difference in efficacy of the two treatments. As
previously reported (24), we observed a relatively short duration of the effectiveness of
IVM, matching with the presence of the drug measured in plasma and skin compart-
ments. Hence, newly hatched mites may not have been killed, confirming the impor-
tance of the second administration of IVM. Accordingly, for maximum efficacy, the
second IVM dose should be given between days 7 and 10, as soon as all eggs have
hatched but before newly hatched mites have time to mate and produce a new
generation of eggs. To optimize the interval of consecutive IVM treatments, additional
studies about egg survival and hatchability in the presence of IVM are required.

The pharmacokinetics profile of AFX orally administered at a dose of 2.5 mg/kg
exhibited a long elimination profile, with the drug present for approximately 7 days in
plasma and 16 days in skin, i.e., �7-fold longer than that of IVM. Previous investigations in
dogs with AFX orally administered at the same dosage demonstrated similar results. AFX
was rapidly absorbed (around 2 to 4 h), with a high initial plasma peak (Cmax, 1,655 � 332
ng/ml). The terminal plasma half-life was remarkably long at up to 15 days (15.5 � 7.8 d)
(22), consistent with the lipophilic and unionized properties of the small AFX molecule, and
with its high affinity to plasma proteins shown in dogs (�99%) (22). Our study is the first
to address AFX pharmacology parameters in the skin, and further studies are needed to
investigate in which layer of the skin AFX is accumulating.

Data in pigs can provide interesting insight for projection and comparison with human
pharmacokinetics (35). We found here that AFX and IVM both potentially have no ovicidal
activity. In contrast to IVM, it seems that due to the long plasma and the skin persistence
of AFX at an effective dose, newly hatched mites are killed and the parasitic life cycle is
completely interrupted. Indeed, AFX could be given as a single dose, thereby conferring a
major advantage of ensuring better treatment adherence, a determining factor for drug
efficacy in resource-poor communities where scabies is endemic.

AFX is considered a safe drug. So far, no adverse clinical signs have been observed in
previous studies in dogs, even after six oral administrations with up to 5 times the
maximum exposure dose (22, 36). Mammalian chloride channels of rat brain cells showed
no significant response to isoxazolines in binding assays (37), indicating that the binding
site (NCA-II) of these channels to AFX is either not present or of low sensitivity (38).

In summary, AFX demonstrated high efficacy in treating scabies in this preclinical
study in pigs, and combined with an interesting pharmacokinetics profile, it guarantees
long-lasting activity, ensuring a convenient dosing as a unique oral administration.
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MATERIALS AND METHODS
Experimentally infested pigs. All procedures were approved by our Institutional Animal Care and

Use Committee, Comité d’éthique pour l’expérimentation animale, Anses/EnvA/Université Paris-Est
Créteil, France (approval no. 02515.03). The animals were handled in accordance with guidelines
established by the French and European regulations for the care and use of animals for scientific
purposes (articles R.214-87 to 214-137 du Code Rural et de la Pêche Maritime, Décret 2013-118, and
European Directive 2010/63/UE). The ARRIVE guidelines were used to design and report the study (39).
Procedures were in accordance with the method described by Mounsey et al. (23) and optimized by
Bernigaud et al. (24).

Twelve 3-week old female Sus scrofa domesticus (large white breed) pigs from the same pig farm
(Gambais, France) were housed at the Centre de Recherche Biomédicale in the Ecole Nationale Vétéri-
naire d’Alfort, France (http://www.vet-alfort.fr/). The mean � SD weight at arrival was 7.15 � 0.64 kg. Pigs
were healthy and initially free of sarcoptic mange, and they had never received any antiparasitic
treatments. At their arrival, drawing lots randomly allocated pigs into three groups (n � 4). To reduce
stress and to acclimate the animals, the pigs were housed 2 weeks before starting the study in small
groups of the same sex. Pigs where placed in similar experimental climate-controlled units by group
(temperature, 21 � 2°C; humidity, 50% � 10%; surface area, 12 m2). Environmental enrichment included
wood shavings on concrete floors that were cleaned once daily. Feed was given once a day, and tap
water was continuously provided. A 12/12-h light/dark cycle was maintained (on at 7 a.m. and off at 7
p.m.). A physical examination of each animal by a veterinarian was performed twice a week before
treatment and daily after treatment for general health conditions, ascertained management according to
animal welfare standards. Care was taken to reduce stress or pain in the pigs. Invasive procedures such
as the collection of blood samples and skin biopsy were kept to a minimum and performed under a
short-term mild sedation, using a mixture of 0.2 ml/kg chlorhydrate of ketamine (Ketamine 1000; Virbac,
Carros, France) and 0.02 ml/kg of xylazine (Rompun 2%; Bayer Healthcare, Loos, France) given by a single
intramuscular injection. The synthetic glucocorticoid immune-suppressant dexamethasone (Fagron SAS,
Thiais, France) was used to promote the initial infestation and increase the intensity and duration of the
infestation. A daily oral dosage of 0.2 mg/kg dexamethasone was administered. Dexamethasone treat-
ment was initiated 1 week prior to infestation and continued during the entire study period. The
infestation was accomplished by directly introducing mite-infected skin crusts deep into the ear canals
of the pigs. Crusts were obtained from a previous cohort of pigs initially infected with crusts of naturally
infected pigs coming from a farm in Brittany (Dominique Dreau, Saint-Allouestre, France) (24). Crusts
were collected in the morning and pigs were inoculated on the same day. Crusts were dissected into
small pieces (approximately 0.5 cm2) containing between 600 and 800 mites. During the procedure, the
pigs were put under mild sedation for 15 min to prevent the dislodgement of the crusts by agitation and
to ensure successful infestation.

Drugs. AFX (Nexgard; Merial/Boehringer, Inc., Lyon, France) was a 68-mg, soft beef-flavored chew (for
dogs weighing between 10.1 and 25 kg). IVM was the human formulation (Stromectol; MSD France,
Courbevoie, France) provided as 3-mg tablets. Pigs were weighed on day 0 to calculate the dose of
treatment required. The pigs were fed their normal ration of food immediately after drug administration.
Pigs were hand pilled to ensure accurate and complete dosing. Researchers involved in performing
assessments and observations did not administer the treatments to pigs. No other acaricide or endec-
tocide treatment was used throughout the study.

Parasitological and clinical assessment and data scoring. The first experimental phase was the
progression of the scabies infestation for 9 weeks after infection. At week 9 postinfection (day 0), the
treatments were administered. The second experimental phase was the assessment of drug efficacy and
the pharmacokinetics study from day 0 to day 50 after treatment. Figure 1 illustrates the study design.
The primary outcome was based on the reduction in the numbers of live mites counted in the skin
scrapings after treatment. The endpoint was the complete absence of live mites at day 14 posttreatment.
Mites were collected and counted in skin scrapings, taken on day 0 (just before treatment) and
subsequently on days 2, 4, 8, 10, 14, 21, 28, 35, and 45 posttreatment to estimate the percentage efficacy
of treatment and the percentage of mite count reduction. Skin scrapings were obtained from each pig;
around 0.2 g of crusts were scraped using a scalpel blade from the ears until blood seeped from the
abrasion. Samples were examined in a petri dish within 2 h after collection. Under a light heat source,
mites were encouraged to crawl out of the crusts. The mites were examined under a stereomicroscope
(SMZ645; Nikon). Only live mites were counted, and the numbers of mites at life stages (adult or
immature stages) were noted. Immature stages included larvae and nymphs.

A clinical score (Fig. 3) was used based on the skin surface affected by scabies lesions (scale from 0
to 6: 0, 0%; 1, �10%; 2, 10% to 29%; 3, 30% to 49%; 4, 50% to 69%; 5, 70% to 89%; 6, 90% to 100%), the
intensity of the erythema of the skin (from 0 to 4: 0, no erythema; 1, mild; 2, moderate; 3, severe; 4,
extremely severe), and the intensity of the encrustment (from 0 to 4: 0, no crust; 1, gray to white, thin
and irregular 1-to 2-mm crust; 2, 2- to 5-mm crust; 3, gray-brown �5-mm crust; and 4, �5-mm hard
crust). The score was calculated for five anatomic sites (ears, legs, tail, back, and head) and added up.
Clinical examination and scoring of animals were carried out weekly after infestation and on day 0 (just
before treatment) and subsequently on days 2, 4, 8, 10, 14, 21, 28, 35, and 45 posttreatment. All animals
were individually examined. Photographs were taken of each pig.

Pigs were observed weekly for 15 min to record pruritus. Movements in response to pruritus, such
as flapping of the ears, rubbing on a surface, and scratching ears with a posterior leg, were recorded. The
scoring of pruritus was carried out after infestation and on day 0 (just before treatment) and subse-
quently on days 2, 4, 8, 10, 14, 21, 28, 35, and 45 posttreatment. All animals were individually examined.
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To estimate the hatchability of the eggs, eggs were collected from the skin scrapings taken at day
0 (just before treatment) and subsequently on days 2, 4, 8, and 14 posttreatment. Each time, 10 eggs
were collected from each group in a sterile plastic petri dish. The eggs were placed in an incubator at
37°C with 90% relative humidity and observed in 24 h intervals.

Afoxolaner and ivermectin pharmacokinetics analysis. Blood samples were collected by jugular
vein puncture in heparinized tubes (BD Vacutainer; BD-Plymouth, UK) on day 0 (just before treatment)
and subsequently on hours 2, 4, 6, and 24, and days 2, 4, 5, 8 (4 h after the second administration of drug),
10, 14, 21, 28, 35, 45, and 50 posttreatment. Plasma samples were prepared by centrifuging blood
samples at 2,000 � g for 10 min. Skin biopsy specimens were made by using a standard 5-mm-diameter
punch biopsy tool (KAI Europe, GmbH, Germany) to extract a piece of epidermis and dermis from the
neck regions of the pigs on day 0 (just before treatment) and subsequently on days 1, 2, 4, 5, 8 (4 h after
the second administration of drug), 10, 14, 21, 28, 35, 45, and 50 posttreatment. Plasma and tissue
samples were stored at �20°C until drug analysis. IVM concentrations were measured in plasma and skin
by high-performance liquid chromatography (HPLC) with fluorescence detection using a procedure
previously described and validated (24, 40). The procedure was performed in the Toxalim laboratory,
INRA, Toulouse, France. AFX concentrations were measured in plasma and skin by liquid
chromatography-mass spectrometry (LC-MS) in the Merial/Boehringer laboratories in Missouri (plasma
analyses) and New Jersey (skin analyses), USA. The extracted analyses were chromatographed by
reverse-phase HPLC and quantified by a triple quadrupole mass spectrometer system using the electro-
spray interface (41, 42). For IVM concentrations, the linearity was similar in the plasma and in the skin
(r � 0.99 over a 0.1- to100-ng/ml concentration range), and the limits of quantitation (LOQs) were
0.05 ng/ml in the plasma and 0.1 ng/g in the skin (24). For AFX concentrations, the lower LOQ was
1 ng/ml in plasma and in skin. The pharmacokinetics parameters were determined using a non-
compartmental analysis (Kinetica computer program, version 4.2; InnaPhase, Philadelphia, PA). The
area under the concentration-time curve (AUC) and the mean residence time (MRT) were calculated
from the time of administration to the time of the last measurable concentration (tlast), using the
arithmetic trapezoidal rule. The peak plasma concentration (Cmax) and time of peak plasma concen-
tration (Tmax) were read from the plotted concentration versus time for each pig.

Statistical analysis. The nonparametric Kruskal-Wallis test was used to compare the groups at
baseline. The primary outcome was based on the reduction in the number of live mites counted in skin
scrapings following treatment. The percentage efficacy was calculated according to the following
formula: efficacy (%) � [(C � T)/C] � 100, where C was the arithmetic mean number of live mites for the
control group and T was the arithmetic mean number of live mites for the treated group for each time
point. The percentage reduction of the mite count was calculated according to the formula: reduction
(%) � [(Mpre � Mpost)/Mpre] � 100, where Mpre was the arithmetic mean number of live mites at
baseline (day 0) and Mpost was the arithmetic mean number of live mites posttreatment (days 2, 4, 8,
10, 14, 21, 28, 35, and 45). The decrease over time in mite count and in clinical and pruritus scores within
each group of pigs was tested for significance (P � 0.05) by repeated measures in a mixed model with
a robust variance estimate using STATA version 12 software. We used a negative binomial regression
model to assess the relationship between parasites (variable to explain), treatments, and time (43).
Pharmacokinetics parameters obtained in the different groups were compared by a nonparametric
Mann-Whitney test at a significance level of P � 0.05.
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